Friday, May 23, 2008

what PCC can do?

R. A. Fernandes, P. Kumar / Tetrahedron Letters 44 (2003) 1275–1278


Before the studies of Corey and co-workers,1 the reactivity of PCC had been little investigated. PCC is well known to convert alcohols into aldehydes or ketones with high efficiency.2a This reagent also converts tertiary cyclopropyl carbinols into the corresponding , -unsaturated ketones,2b 1,4-dienes into dienones,2c,d hydroquinone silyl ethers into quinones,2e enol ethers toesters and lactones2f and oximes to ketones.2g Other known important conversions using this reagent are: (i)furan rings undergo oxidative ring expansion,3a (ii) 5-3 -tetrahydropyranyl ethers are oxidized to the corresponding carbonyl 4-3,6-diones,3b (iii) olefins are oxidized to carbonyl compounds via the oxidation of organoboranes.3c–g Furthermore, PCC is well known
for selective oxidation of steroidal allylic alcohols,4a oxidative cleavage of aryl substituted olefins,4b specific oxidative cleavage of allylic and benzylic ethers,4c oxidation of benzylic4d and active methylene compounds,4e oxidative cleavage of 1,4-dioxenyl carbinols to - hydroxy acids and -ketoacids,4f one-pot oxidation of glycals to lactams,4g cleavage of vicinal diols4h and modified oxidation of aldehydes to carbamoyl azides/ acyl azides or carboxylic acids.4i Thus, the varied and numerous oxidative reactions of PCC makes it a versatile oxidant in organic synthesis.5


references;
1. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647–2650.
2. (a) Augustine, R. L. Oxidation; Marcel Dekker: New York, 1969; Vol. 1; (b) Wada, E.; Okawara, M.; Nakai, T. J. Org. Chem. 1979, 44, 2952–2954; (c) Wender, P. A.;
Eissenstat, M. A.; Filosa, M. P. J. Am. Chem. Soc. 1979, 101, 2196–2198; (d) Marshall, J. A.; Wuts, P. G. M. J. Org. Chem. 1977, 42, 1794–1798; (e) Willis, J. P.; Gogins, K. A. Z.; Miller, L. L. J. Org. Chem. 1981, 46, 3215–3218; (f) Piancatelli, G.; Scettri, A.; D’Auria, M. Tetrahedron
Lett. 1977, 18, 3483–3484; (g) Maloney, J. R.; Lyle, R. E. Synthesis 1978, 212–213.
3. (a) Piancatelli, G.; Scettri, A.; D’Auria, M. Tetrahedron Lett. 1977, 18, 2199–2200; (b) Parish, E. J.; Kizito, S. A.; Heidepriem, R. W. Synth. Commun. 1993, 23, 223–230; (c) Ramana Rao, V. V.; Devaprabhakara, D.; Chandrasekaran, S. J. Organomet. Chem. 1978, 162, C9–C10;
(d) Rao, C. G.; Kulkarni, S. U.; Brown, H. C. J. Organomet. Chem. 1979, 172, C20–C22; (e) Brown, H. C.; Kulkarni, S. U.; Rao, C. G. Synthesis 1980, 151–153; (f) Brown, H. C.; Kulkarni, S. U.; Rao, C. G. Synthesis 1979, 702–704; (g) Brown, H. C.; Rao, C. G.; Kulkarni, S. U.
Synthesis 1979, 704–705.
4. (a) Parish, E. J.; Schroepfer, G. J., Jr. Chem. Phys. Lipids 1980, 27, 281–288; (b) Narasimhan, V.; Rathore, R.; Chandrasekaran, S. Synth. Commun. 1985, 15, 769–774; (c) Cossy, J.; Bouzbouz, S.; Lachgar, M.; Hakiki, A.; Tabyaoui, B. Tetrahedron Lett. 1998, 39, 2561–2594; (d)
Rathore, R.; Saxena, N.; Chandrasekaran, S. Synth. Commun. 1986, 16, 1493–1498; (e) Bonadies, F.; Bonini, C. Synth. Commun. 1988, 18, 1573–1580; (f) Fetizon, M.; Goulaouic, P.; Hanna, I. Tetrahedron Lett. 1988, 29, 6261– 6264; (g) Rollin, P.; Sinay, P. Carbohydr. Res. 1981, 98, 139–142; (h) Cisneros, A.; Fernandez, S.; Hernandez, J. E. Synth. Commun. 1982, 12, 833–838; (i) Reddy, P. S.; Yadagiri, P.; Lumin, S.; Shin, D.-S.; Falck, J. R. Synth.
Commun. 1988, 18, 545–551.
5. Piancatelli, G.; Scettri, A.; D’ Auria, M. Synthesis 1982, 245–258.

2 comments:

J M Carr said...

Excellent review! I'm liking your posts more and more! Keep up the good work

Anonymous said...

Do you know of a good reference for the oxidation of allylic CH2 to C=O?